Elastographic characterization of HIFU-induced lesions in canine livers.
نویسندگان
چکیده
The elastographic visualization and evaluation of high-intensity focused ultrasound (HIFU)-induced lesions were investigated. The lesions were induced in vitro in freshly excised canine livers. The use of different treatment intensity levels and exposure times resulted in lesions of different sizes. Each lesion was clearly depicted by the corresponding elastogram as being an area harder than the background. The strain contrast of the lesion/background was found to be dependent on the level of energy deposition. A lesion/background strain contrast between -2.5 dB and -3.5 dB was found to completely define the entire zone of tissue damage. The area of tissue damage was automatically estimated from the elastograms by evaluating the number of pixels enclosed inside the isointensity contour lines corresponding to a strain contrast of -2.5, -3 and -3.5 dB. The area of the lesion was measured from a tissue photograph obtained at approximately the same plane where elastographic data were collected. The estimated lesion areas ranged between approximately 10 mm2 and 110 mm2. A high correlation between the damaged areas as depicted by the elastograms and the corresponding areas as measured from the gross pathology photographs was found (r2 = 0.93, p value < 0.0004, n = 16). This statistically significant high correlation demonstrates that elastography has the potential to become a reliable and accurate modality for HIFU therapy monitoring.
منابع مشابه
Visualization of HIFU-induced lesion boundaries by axial-shear strain elastography: a feasibility study.
In this paper, we report on a study that investigated the feasibility of reliably visualizing high-intensity focused ultrasound (HIFU) lesion boundaries using axial-shear strain elastograms (ASSE). The HIFU-induced lesion cases used in the present work were selected from data acquired in a previous study. The samples consisted of excised canine livers with thermal lesions produced by a magnetic...
متن کاملRadiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation.
Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmon...
متن کاملRadiation-force technique to monitor lesions during ultrasonic therapy.
This report describes a monitoring technique for high-intensity focused ultrasound (US), or HIFU, lesions, including protein-denaturing lesions (PDLs) and those made for noninvasive cardiac therapy and tumor treatment in the eye, liver and other organs. Designed to sense the increased stiffness of a HIFU lesion, this technique uniquely utilizes the radiation force of the therapeutic US beam as ...
متن کاملPotential Strong-hifu-ablation-induced Tissue Damage as Measured by Viscoelastic Characterization of Canine Liver Tissue Post-ablation
Objective: High Intensity Focused Ultrasound (HIFU) has been shown capable of ablating soft tissues in vitro and in vivo. However, mainly due to the lack of knowledge of the exerted radiation force in tissue, mechanical characterization of ablated tissues, particularly at very high HIFU powers, remains largely understudied. This study aims at quantifying the canine liver tissue viscoelastic pro...
متن کاملHigh intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI).
Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ultrasound in medicine & biology
دوره 25 7 شماره
صفحات -
تاریخ انتشار 1999